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Abstract The water storage capacity of the root zone can determine whether plants survive dry periods and
control the partitioning of precipitation into streamflow and evapotranspiration. It is currently thought that top‐
down, climatic factors are the primary control on this capacity via their interaction with plant rooting
adaptations. However, it remains unclear to what extent bottom‐up, geologic factors can provide an additional
constraint on storage capacity. Here we use a machine learning approach to identify regions with lower than
climatically expected apparent storage capacity. We find that in seasonally dry California these regions overlap
with particular geologic substrates. We hypothesize that these patterns reflect diverse mechanisms by which
substrate can limit storage capacity, and highlight case studies consistent with limited weathered bedrock extent
(melange in the Northern Coast Range), toxicity (ultramafic substrates in the Klamath‐Siskiyou region), nutrient
limitation (phosphorus‐poor plutons in the southern Sierra Nevada), and low porosity capable of retaining water
(volcanic formations in the southern Cascades). The observation that at regional scales climate alone does not
“size” the root zone has implications for the parameterization of storage capacity in models of plant dynamics
(and the interrelated carbon and water cycles), and also underscores the importance of geology in considerations
of climate‐change induced biome migration and habitat suitability.

Plain Language Summary What determines how much water plants can store in their root zone?
One school of thought posits that plants “size” the root‐zone capacity to survive a drought of a particular return
period. In this scenario, plants extend their roots into the subsurface in response to climate drivers (e.g.,
precipitation magnitude‐frequency and atmospheric water demand). This worldview neglects the potential for
geology to restrict root access to water. “Bottom‐up” limitations on storage capacity have been described at
individual field sites, but it has been unclear how to identify geologic limitations at large scales. Here, we
introduce an approach that quantifies differences between the climatically expected and locally observed
apparent storage capacity, and relate these spatial patterns to geologic substrate. Importantly, we quantify
apparent storage capacity via a method that includes water below the upper 1.5 m, within weathered bedrock,
which is an important water source in seasonally dry climates and is typically excluded from traditional soil
texture databases. We find that geology limits storage capacity at regional scales, and synthesize existing field
evidence to hypothesize mechanisms of bottom‐up control. Our findings have important implications for water‐
carbon cycle modeling efforts and the prediction of plant biome migration in response to climate change.

1. Introduction
Root‐accessible water storage capacity in the subsurface is a key earth system property that regulates the water
and carbon cycles (Kleidon & Heimann, 1998). For example, plant transpiration of stored water is a first‐order
control on Earth’s surface energy budget and terrestrial water partitioning (Milly, 1994), setting aquatic
ecosystem habitat and water quality and quantity for downstream users. Sufficient storage capacity also enables
plants to bridge meteorologic droughts and sustain photosynthesis during extreme dry periods (McLaughlin
et al., 2020; Porporato et al., 2004). It has been argued that top‐down (climatic) drivers are primarily responsible
for determining the large‐scale spatiotemporal variability of storage capacity (Bouaziz et al., 2022; Liu
et al., 2022; Nijzink et al., 2016; Guswa, 2008, 2010; van Oorschot et al., 2021). However, field investigations
have revealed that geologic or edaphic factors can exert a primary control at some sites (e.g., Hahm et al., 2019),
but it is presently unknown where and why geologic factors eclipse climate factors at landscape scales. This
uncertainty challenges earth system and dynamic global vegetation modeling efforts, including prediction of plant
biome migration in the context of climate change.

Plant‐available water storage capacity is understood to be set by (a) the pore‐size distribution and its variation
with depth, which determine the amount of water that can be held at various water potentials, and (b) the presence
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of roots to access that porosity (Klos et al., 2018; Zhang et al., 2020). Factors related to geology can limit the
storage capacity as depicted in Figure 1 by: providing a direct physical limit due to limited porosity in the near
surface (e.g., the presence of low porosity fresh bedrock at a shallow depth Hahm et al., 2019) or pore sizes being
too large to store water against gravity drainage (Liu et al., 2021; Jiang et al., 2020); or by indirectly inhibiting root
growth in available porosity due to nutrient limitation or toxicity (Hahm et al., 2014; Kruckeberg, 1985; Morford
et al., 2011). In contrast, top‐down (climatic) controls are thought to determine the storage capacity primarily by
setting atmospheric water demand and precipitation inputs, including the frequency and duration of dry periods
that plants need to endure to survive. Various models that explore optimal plant strategy suggest that plants will
invest just enough carbon in root profiles to have sufficient water access to survive dry periods of a particular
recurrence interval (Guswa, 2008, 2010; Schenk, 2008; Schymanski et al., 2008; Speich et al., 2018; Yang
et al., 2016). This school of thought is encapsulated in the notion that climate “sizes” the root‐zone storage ca-
pacity (de Boer‐Euser et al., 2016; de Boer‐Euser, Palalane, et al., 2019; Gao et al., 2014; Gentine et al., 2012).
Optimal rooting frameworks may neglect the potential for bottom‐up factors to limit storage capacity, however,
because they implicitly treat the subsurface like an infinite sand box, into which plants may invest as much—or as
little—into rooting as is advantageous (e.g., de Boer‐Euser, Meriö, & Marttila, 2019; Singh et al., 2020).

A first‐order challenge in teasing apart climatic versus geologic controls on storage capacity is quantifying the
actual storage capacity accessed by plants. Traditionally, the storage capacity has been parameterized in models
through calibration or with the aid of distributed soils datasets, which typically quantify water retention properties
through the upper 1–1.5 m or to the depth of a restrictive layer. Although widely available and relatively finely
resolved, soils datasets have two principle shortcomings: (a) they do not capture whether roots are actually present
in the soil profile, and (b) they do not extend deep enough into the subsurface to capture porosity profiles in deeper
weathered bedrock that commonly underlies soils (Dawson et al., 2020; Holbrook et al., 2014; Witty et al., 2003),
where widespread evidence has emerged of root penetration and water uptake (McCormick et al., 2021; Stocker

Figure 1. Conceptual diagram illustrating hypothesized geologically mediated controls on apparent root‐zone water storage
capacity, SR (lowest row) and corresponding plant biome and hydrologic manifestations. Curved arrows indicate that the
geologic controls are not mutually exclusive and may be subject to feedback mechanisms.
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et al., 2023; Zhu et al., 2023). The relative inaccessibility of the deep subsurface challenges quantification of these
factors (Stocker et al., 2023).

Following early work on storage deficits (Grindley, 1960, 1968), a recently developed and now widely adopted
alternative approach (Dralle et al., 2021;Wang‐Erlandsson et al., 2016) constrains storage capacity via tracking of
hydrologic fluxes to calculate maximum observed deficits. Precipitation (flux in) and evapotranspiration (flux
out) are monitored at a location, and it is reasoned that the root‐accessible subsurface water storage capacity must

Figure 2. California‐wide maps of climatic predictors of SR (top row) and observed, predicted, and difference between predicted and observed SR (bottom row). Masked
(white) areas are locations where SR calculation criteria are not met (see Methods).
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be big enough to explain the largest observed cumulative evapotranspiration in excess of precipitation over a
period of record (i.e., the largest observed storage deficit). This approach quantifies an apparent root‐zone water
storage capacity (SR): that is, SR identified from the largest observed deficit is only a lower bound on actual
accessible storage capacity (McCormick et al., 2021). For example, it is possible that plants may have had access
to—and would have used—more water if dry conditions persisted. In other words, actual root‐zone water storage
capacity may be larger than SR, but we do not have the means to directly measure it (although some researchers
have attempted to quantify it by fitting yearly maximum deficit values to extreme value distributions (Wang‐
Erlandsson et al., 2016)). Nevertheless, storage capacity calculated via deficit‐style approaches has many theo-
retical and pragmatic advantages. SR results in improved hydrological model performance when used as an input
parameter (Lapides et al., 2023; Wang‐Erlandsson et al., 2016) and can explain continental‐scale patterns in water
partitioning (Cheng et al., 2022) and storage dynamics (Trautmann et al., 2022); deficit calculations have also
proven essential in the accurate prediction of snowmelt contributions to streamflow following droughts (Lapides
et al., 2022). Importantly, deficit‐calculated SR does not require a priori assumptions regarding porosity or rooting
profiles, and distributed hydrologic flux datasets make it feasible to estimate SR at large spatial scales in cloud‐
based analysis platforms like Google Earth Engine.

Although distributed estimates of SR are now available, it has remained challenging to isolate both the spatial
patterns and drivers of geologic factors impacting the magnitude of SR. Here we explore the results of a modeling
exercise that assumes that climatic controls are the primary drivers of spatial variations in SR. This exercise
reveals locations where the null hypothesis may be rejected (i.e., places where geologic controls may be
important) based on deviations between the SR predicted by modern climate (informed by all observations) and
empirically observed SR (the local observation). In other words, if we predict SR using top‐down (climate)
controls, bias or error between local predictions and observations may be related to underlying subsurface
controls. For this exercise, we use a simple machine learning (random forest) approach, although other techniques
like regression or binning could also be suitable. We then explore select case studies of geologic control and
suggest process explanations through an analysis of available subsurface geologic and hydrologic field studies.

2. Methods
2.1. Study Area

The study area covers the state of California, USA, where three factors make for an ideal setting to explore
geologic controls on SR: (a) there is a high diversity of annual precipitation and potential evapotranspiration rates
(Zomer et al., 2022), geologic substrates (Baldwin, 2014; Kruckeberg, 1985), and tectonic uplift rates (Hen-
ry, 2009; Lock et al., 2006; Merritts & Bull, 1989), resulting in large spatial gradients to explore controls on plant
biomes and SR; (b) the local Mediterranean climate (asynchronous seasonal precipitation and energy input, with a
long summer dry period) results in almost complete reliance on wet season‐replenished storage to sustain
evapotranspiration in summer, and (c) existing evidence for widespread and routine use of bedrock water by
woody vegetation (McCormick et al., 2021) indicates that water storage capacity inferred from soils databases is
insufficient to describe SR and that bedrock geologic properties that impact plants (nutrients, toxins, and water
status) are likely to strongly influence spatial patterns in SR.

2.2. Identification of Lower Than Climatically Expected SR

To identify locations with a geologic control on SR, we compare remotely sensed observations of SR to climat-
ically predicted SR on a per‐pixel basis. Locations with an observed SR lower than expected for the local climate
(i.e., low relative to the predicted SR) are potentially indicative of a geologic limiting factor. The observed SR is
determined based on the previously described approach that records at each location the maximum deficit be-
tween cumulative precipitation and cumulative evapotranspiration (Dralle et al., 2021; Wang‐Erlandsson
et al., 2016), which in California typically exceeds published soils database water storage capacities and must
include deeper water storage in bedrock (McCormick et al., 2021). We use a machine learning (random forest)
model to predict SR solely as a function of climatic factors.

Water Resources Research 10.1029/2023WR035362

HAHM ET AL. 4 of 18

 19447973, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035362 by Sim

on Fraser U
niversity, W

iley O
nline L

ibrary on [11/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.3. Data Sources

All datasets described below previously existed and were ingested and analyzed for this study via the Google
Earth Engine cloud computation environment (Gorelick et al., 2017), where spatial joins and spatial resampling
were also performed. The data are mapped at the state‐wide level in Figure 2.

2.3.1. Observed Apparent Root‐Zone Water Storage Capacity, SR

SR was calculated following the deficit‐based approach described above (see Wang‐Erlandsson et al. (2016) for
more details), modified to account for the impacts of snow following Dralle et al. (2021). We used the SR dataset
provided by Dralle et al. (2021), which was calculated using data from 2003 to 2017 and is provided at
approximately 1 km pixel resolution. This SR dataset relies on precipitation data from PRISM (Daly et al., 2015),
evapotranspiration data from PML v2 (Zhang et al., 2019), and snow cover from the MODIS Terra normalized
difference snow index product (Hall et al., 2010).

Uncertainties in distributed timeseries hydrologic flux data (like the precipitation and evapotranspiration datasets
used here) can be difficult to quantify. PRISM‐precipitation error tends to be higher in mountainous areas, and
may exceed 20% in some regions of the Sierra Nevada (Daly et al., 2008). While recognizing that uncertainties
may mask or spuriously produce apparent bottom‐up controls on SR, multiple lines of evidence and reasoning lead
us to proceed with the present analysis: (a) at larger spatial scales there is reasonably good internal consistency
(i.e., mass‐balance closure) between PRISM precipitation minus PML evapotranspiration versus USGS gauged
streamflow across minimally disturbed, Mediterranean catchments (Nash‐Sutcliffe efficiency of 0.91), (b) errors
present in any particular distributed timeseries precipitation dataset are likely of similar magnitude and direction
across local geologic contacts, such that inferred differences in SR will tend to be of the correct direction if not
absolute magnitude, and (c) because many evapotranspiration products rely heavily on the same remotely sensed
spectral indices, spatial patterns in evapotranspiration may be the same across different products even if absolute
magnitudes differ. As higher‐accuracy distributed timeseries hydrologic flux data become available in the future,
these can be incorporated into better estimates of SR. Independent, field‐based validation or error quantification of
SR estimates are challenging in California because many plant communities root deeply into weathered bedrock,
where direct observations of water storage dynamics are scarce. However, a recent compilation of available field‐
data broadly confirmed that the remotely sensed SR observations are commensurate with in situ observations
(McCormick et al., 2021). This SR dataset also excludes urban areas, open water, and croplands as well as areas in
which evapotranspiration exceeded precipitation, which may be due to unaccounted for irrigation, inter‐pixel
groundwater fluxes or data error.

Our approach implicitly assumes that plant communities have reached a steady‐state, late‐successional stage, with
a species composition that is not limited by dispersal, such that climate and geologic factors alone set the SR. In
reality, consumer dynamics (Kuijper et al., 2015) or episodic disturbances (e.g., fire or logging) may result in
lower than climatically possible evapotranspiration and therefore a lower than climatically expected SR. This is
particularly of concern when SR is inferred from a relatively short timeseries of precipitation and evapotrans-
piration. Here, the SR dataset is inferred from 15 continuous water years, and we do not exclude areas with logging
or fire. This is motivated by (a) the desire to include as much training data as possible, (b) the finding that spot
checking of logged areas indicates that SR differences between adjacent logged or burned areas during the study
period tend to be small relative to differences across geologic contacts or large climate zones, and (c) the results of
an SR analysis (available in the accompanying code and data repository) of burned areas across the state of
California. In (c), we identified all pixels which burned during the study period and the three years leading up to it
from the MODIS MCD64A1 burned area data product; approximately 13% of the study area burned during this
time. We trained the random forest model (described below) both with and without these pixels, and then in both
cases assessed the mean difference between observed and predicted SR in pixels that burned. If fire resulted in
lower observed SR than climatically predicted, we would expect SR observed to be different than SR predicted, and
specifically for SR observed minus SR predicted to be a significantly negative. Instead, in both model cases, we
found that SR observed minus SR predicted was a small, positive number (≈5 mm). This analysis suggests that
disturbance impacts to SR may be minor so long as SR is calculated from a long enough time series (in this case,
>1 decade).

Water Resources Research 10.1029/2023WR035362

HAHM ET AL. 5 of 18

 19447973, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023W

R
035362 by Sim

on Fraser U
niversity, W

iley O
nline L

ibrary on [11/04/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.3.2. Climatic Predictors of SR

We used four static climate variables as predictors of SR.

• Mean annual precipitation, P (mm)
• Mean annual potential evapotranspiration PET (mm)
• The coefficient of variation of annual precipitation, CVP, equal to the standard deviation of annual precipi-

tation divided by mean annual precipitation.
• The asynchronicity index between precipitation and potential evapotranspiration (in time and in relative

magnitude), ASI (Feng et al., 2019).

The precipitation data were obtained from PRISM (Daly et al., 2015) and the potential evapotranspiration data
from the MODIS Terra MOD16A2 product (Running et al., 2017) for the period 2003–2017. The ASI raster was
previously generated and described in (Hahm, Lapides, et al., 2022). These climate variables were chosen for their
widespread availability at relatively high spatial resolution, and because magnitudes and timing of water delivery
and water demand are the first order constraints on the amount of water available to plant biomes and the amount
that can be taken up by the atmosphere; together P and PET also capture the aridity index (which is important for
water partitioning within the classical Budyko framework (Milly, 1994; Porporato et al., 2004)). In California’s
Mediterranean climate, an extended summer dry season results in the mean annual precipitation being very
similar to the wet season (October–April) precipitation; plants largely rely on stored water during the summer
growing season. The variability of annual precipitation (captured inCVP) roughly accounts for drought recurrence
intervals, which have been hypothesized to be the other primary climatic driver of top‐down root zone storage
capacity (Gao et al., 2014). These four variables (as described in greater below) were capable of explaining a large
fraction (>60%) of the variance in SR, indicating that they are likely the primary controls. Alternative climate
features not captured by the four variables used here likely act as additional top‐down controls on SR, and could
potentially improve the predictive power of the model. However, the general identification and interpretation of
regions exhibiting signs of potential bottom‐up control of SR—rather than the best predictive accuracy—is the
primary goal of this study.

2.3.3. Random Forest Model

We used the RandomForestRegressor module within the scikit‐learn Python package (Pedregosa et al., 2011) to
predict SR from four climate variables (mean annual precipitation, the coefficient of variation of annual pre-
cipitation, mean annual potential evapotranspiration, and the seasonal asynchronicity between precipitation and
energy delivery; detailed in Section 2.3.2). The model target for calibration is observed SR, which comes from
remotely sensed distributed timeseries hydrologic fluxes and the deficit‐tracking approach described above.
Model accuracy was assessed by first training on a random subset of 75% of the observations and using the
resulting preliminary model to predict SR with the remaining 25% set‐aside validation data, after which a final
model was trained on the entire dataset. In each case default scikit‐learn (version 1.2.0) hyperparameters were
used, except for the minimum number of samples per leaf node, which was set to 100 (discussed below).

The choice of random forest modeling over a multiple linear regression approach (with and without interaction
terms) is due to its better performance and the flexibility of the random forest to account for non‐linear in-
teractions between climate drivers and SR, which were apparent during exploratory data analysis. The choice of
random forest modeling over climatic envelope binning approaches is due to the readily available model di-
agnostics for random forests, specifically feature importance and partial dependence analysis.

The extent to which a low SR for a given climate is indeed lowmay be underestimated by our random forest model
which is trained to predict the mean SR rather than the climatically optimal SR. This is the case because the training
data consists of an unknown mixture of climatically optimal and geologically limited SR. For this reason, a de-
viation of 0 or even a positive deviation between the climatically predicted and observed SR does not necessarily
mean that there is not a potential bottom‐up limitation on SR. Absolute deviations between observed and predicted
SR may be generally interpreted as conservative (minimum) estimates of bottom‐up limitation.

A concern with any model is overfitting: if all pixels situated within a certain climate configuration identified by
the model are geologically rather than climatically limited, the model will not identify them as having lower than
climatically expected SR because no other pixels with higher SR for that climate configuration exist. A related
limitation of our approach is that if a unique climate configuration exclusively occurs within a small subset of
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possible geologic substrates, the random forest model may not be able to identify any regions of geologically
limited SR for that climate configuration if the geologies present in that climate exert similar controls on SR.
Geologic control may also not be detected for geologies found only in a specific climate with limited other
geologies present. However, we found that the most common rock types by area had significant climate overlap
with other rock types across the study area. Thus, while it is possible in general to identify a geologic substrate
with systematically lower than climatically expected SR as having a bottom‐up limitation on SR, the lack of a
difference between observed and climatically expected SR does not necessarily mean that geologic substrate is not
limiting SR, because of the potential for a unique climate configuration to mask the limitation.

These limitations are unavoidable with both the random forest approach as well as other empirical climatic
envelope binning approaches, but can be overcome to some extent by limiting the decision tree depths (i.e.,
limiting fit) by enforcing a minimum leaf sample size. Specifying decision tree depth hyperparameters to limit
model fitting comes at the potential cost of absolute model accuracy. However, identification of variability within
a particular climate configuration rather than the best predictive accuracy is the overarching goal in this study. As
shown in accompanying data and code repository notebooks, sensitivity explorations indicated that while
changing decision tree depth hyperparameters resulted in small differences in the absolute magnitudes of devi-
ation between predicted and observed SR at a particular location, the overall pattern was not very sensitive to the
minimum number of leaf nodes. That is, locations with locally smaller predicted than observed SR, for example,
remain identified as such across two orders of magnitude variation in the minimum number of leaf nodes.

2.3.4. Geologic Layers

We compared the output of the random forest model to existing geologic maps. For statewide analyses, we used
the 1:750,000 scale digitized Geologic Map of California (Jennings et al., 2010) to interpret patterns in climat-
ically predicted versus observed SR. The map was rasterized to 1 km pixel to match the SR dataset resolution. We
additionally used a 1:65,000 scale geologic map (Huber, 1968) to explore km‐scale SR anomaly patterns across
granitic plutons in the Sierra Nevada.

3. Results
Our primary findings are that (a) while in general climate can predict SR with reasonable accuracy, there is
substantial unexplained variance; (b) regions where observed SR tends to be lower than climatically predicted are
in many cases spatially bounded by geologic contacts, indicative of a bottom‐up geologic control on SR, and (c)
these regions of apparent geologic‐controlled SR are not confined to a particular rock type: diverse lithologies—
and hypothesized causal mechanisms—are capable of limiting SR.

3.1. Observed SR

Over much of the state, SR falls between 300 and 600 mm (Figure 2e). The largest observed SR values (yellow
areas in Figure 2e) are found along the western flank of the southern Sierra Nevada and the Transverse Ranges,
which also have high interannual variability of precipitation (CVP, Figure 2c) and moderately high energy de-
livery (PET, Figure 2a). Very low SR (purple areas in Figure 2e) is observed in the far north‐east (Modoc Plateau),
higher elevation regions in the Sierra Nevada, and parts of the foothills surrounding the Sacramento and Central
Valley and the Tulare Basin (the large N‐S trending region in white in Figure 2 that was masked from analysis
primarily due to large agricultural operations and irrigation).

3.2. Climatically Predicted SR

The random forest model driven by the static climate variables predicts SR with a root mean square error (RMSE)
of 132 mm (the average observed SR of all pixels is 416 mm) and an R2 of 0.61, indicating that the four climatic
factors cannot fully capture the variation in SR. This model was specified to have a minimum of 100 leaf nodes to
limit the lumping of particular climate configurations within particular geologic units (see above); hyper-
parameter tuning estimates indicated that the highest accuracy model would have a minimum of 3 leaf nodes but
still have an RMSE of 114 mm. In contrast, a multiple linear regression model including interaction terms (not
shown) with the same predictor variables achieves an RMSE of 183 mm, much worse than the random forest. At
broad scales, the pattern of predicted SR using the random forest model (Figure 2f) closely resembles the pattern of
observed SR (Figure 2e).
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When the final random forest model is trained with all the available data,
analysis of feature importance (Figure 3) indicates that CVP is the most
important predictor of SR, followed by mean annual P. Thus the random forest
model indicates that water supply (its inter‐annual variability and average
magnitude) are the most important climatic controls on SR within California,
with energy supply (PET ) and the intra‐annual patterns of water and energy
delivery (ASI) being less important.

Partial dependence plots (Figure 4) reveal the marginal effect on predictions
of SR to each climate predictor variable. This analysis indicates that high
magnitudes of both P and PET and low magnitudes of CVP predict low values
of SR. SR increases monotonically with CVP, whereas the partial dependence
of SR on P exhibits a humped relationship, with a mesic maximum (Good
et al., 2017). There is only a weak negative relationship for ASI. We hy-
pothesize that the physical mechanisms behind these patterns are connected to

the impacts of annual magnitude and variability of water delivery. SR is likely low at low P because there is simply
not enough precipitation that arrives prior to dry periods to support much evapotranspiration, limiting the size of
the deficit (our measure of SR) that can grow. SR is similarly low at high P, but for the opposite reason that lo-
cations with high P may have their evapotranspiration limited by energy availability (wetter places tend to have
lower potential evapotranspiration in California). SR may increase with CVP partly because the denominator in
that term is P but also because larger relative inter‐annual variability means that plants must rely on more stored
water to bridge droughts relative to the typical use for the plant community.

3.3. Regions of Climatically Under‐Predicted SR and Underlying Geology

While the overall patterns of observed and predicted SR are similar, the differences reveal where geology may
limit plant water availability. Figure 2g shows state‐wide areas where the observed SR is less than the climatically
predicted SR. These pixels are, in many regions, strongly clustered in space and include a large N‐S trending swath
and other smaller regions of the Northern Coast Ranges, the foothills surrounding the north end of the Sacramento
Valley, and large parts of the southern Sierra Nevada. While less obvious in the full map of California, the
anomalies are spatially organized at local scales as well (Figures 5a, 5d, 5g and 5j).

The clustering could be due to a regional, systematic top‐down disturbance (e.g., fire, logging, or other unac-
counted for land‐use) or unaccounted‐for climate variable in the model. However, comparison of these regions
with geologic mapping indicates instead that substrate is playing the primary role in these spatial patterns.

Figure 5 zooms in on four example regions (one for each row) where SR anomalies roughly coincide in space with
mapped geologic units. The left column of Figure 5 shows how pixels with lower than climatically expected SR (in
dark red) tend to be clustered rather than randomly distributed across the landscape, with clusters aligning
reasonably well with outlines of geologic formations. The middle column highlights the particular mapped
geologic unit whose extent includes areas of anomalous SR. The right column shows the same mapped geologic

Figure 3. Permutation feature importance of the random forest climate
predictors of SR: higher feature importance indicates that a climate predictor
is an important predictor of SR (inferred by quantifying how much worse the
model performs when that variable is randomly shuffled).

Figure 4. Partial dependence plots show how variation in individual climatic predictor features (x‐axes) on average impacts
the predicted target variable (SR, y‐axis) when the other climate predictors are controlled for. Vertical lines above x‐axes
denote decile breaks for the distribution of each climate predictor variable.
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Figure 5.
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unit’s outline superimposed on satellite imagery, and Figure 6 more clearly shows these regions to be less forested
than their immediate surroundings. The four highlighted regions have distinct rock types (from top to bottom in
Figure 5 and clockwise in Figure 6: melange, volcanic, ultramafic, and granitic). The hypothesized mechanisms
for geologic control exerted by each of these rock types is explored in the Discussion below.

In Figure 7, we highlight expansive mapped geologic units (more than 1,000 km2 areal coverage) where the
median of the observed minus predicted SR is less than − 20 mm (i.e., geologic units where the observed SR tends
to be substantially less than the climatically predicted SR across the state of California). These substrates span
diverse lithologies (including sedimentary, metamorphic and igneous), and, in some cases, the same units
identified visually in the regional case‐studies (Figure 5) also exhibit anomalously low SR at the state‐wide scale.
Overall, 41% of the study area, or approximately 80,000 km2 had an observed SR less than − 20 mm than the
climatically predicted SR. It is worth noting that Figure 7 identifies young geologic substrates (Quaternary age) as
particularly subject to lower than climatically expected storage capacity. This may be due to a variety of
mechanisms, including limited time for nutrients to be fixed or mobilized (Chadwick et al., 1999) or for water‐
retaining clay minerals to form (Jefferson et al., 2010).

Supplemental Dataset 1 provides more quantitative detail (specifically, the lower quartile, median, and upper
quartile of the difference between the observed and predicted SR) for the 30 largest geologic units by area in the
state, sorted by the median value. Additionally, geologic information, latitude and longitude, and observed and
predicted SR for every pixel are shared in an accompanying comma‐separated data file (df_joined.csv) in the data
and code repository.

4. Discussion
To evaluate where geologic substrates may limit biomass or plant productivity and thus water vapor fluxes to the
atmosphere, we identified locations where the observed apparent root‐zone water storage capacity (SR) is smaller
than expected relative to other locations with similar climate. Similar to empirical ecological approaches that
relate plant productivity or biome characteristics to climate, this empirical identification procedure does not
determine the mechanisms underlying the lower‐than‐expected SR, which could be associated with disturbance,
land‐use, or herbivory dynamics. The spatial congruence of many of these locations with geologic boundaries, as
opposed to, for example, fire or land use boundaries, provides strong evidence for geologic limitations to plant
water availability.

4.1. Process‐Based Mechanisms of Geologic Limitation of SR

Figure 1 synthesizes previously proposed mechanisms for geologically limited SR. Two of these mechanisms are
hydrologic mechanisms that limit plant‐water availability directly (water storage limitation and water excess)
whereas the other two mechanisms indirectly limit SR via chemical processes that limit plant growth (nutrient
limitation and toxicity). We stress that these drivers are not necessarily independent: for example, low nutrient
availability could limit plants which in turn limits porosity production in the subsurface. Below, we draw on
insights from previous field studies to illustrate how these mechanisms operate, using examples revealed by our
mapping as illustrative case studies.

4.1.1. Water Limitation and Excess

In both soil and weathered bedrock, connected porosity enables water storage and flow, thereby regulating water
status in the root zone (Klos et al., 2018). In upland environments, the weathered bedrock layer is variably thick
and typically underlies a physically mobile regolith (soil, in the geomorphological sense) (Rempe & Die-
trich, 2014). Weathered bedrock forms as chemical and physical weathering fronts propagate downwards into

Figure 5. Four regional‐scale case studies of apparent geologic control on SR (one per row). The hypothesized mechanism
responsible for anomalously low SR for the local climate (i.e., red shading in the left column) is identified with the labels at
left. The middle column highlights the geologic unit whose spatial extent tends to coincide with a region of anomalous SR. In
the top three rows, the geology mapping comes from the state‐wide compilation (Jennings et al., 2010), and in the bottom row
from a smaller quadrangle (Huber, 1968). Satellite imagery (from ESRI) in the right column reveals that the low SR areas also
tend to have lower canopy cover than their immediate surroundings. See Discussion for synthesis of prior field studies that
support the hypothesized geologic limitation mechanism.
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fresh bedrock as it is nears Earth’s surface (Riebe et al., 2017). Under similar climate, spatial gradients in tectonics
and lithology can result in variations in weathering extent and thus water storage and flow properties. These
variations can result in either limited or excess water, and in some scenarios, both at the same location at different
times of year.

For the first case study, we highlight the Central Belt melange of the Franciscan Formation that runs roughly
parallel to the coast in the Northern California Coast Ranges (first row in Figure 5). In a region where the local
climate can support some of the tallest trees on the planet, the melange is surprisingly sparsely vegetated; instead
of the dense forest found immediately to the west, the melange is characterized by an open savanna of deciduous
Oregon White oak (Quercus garryana) and an herbaceous groundcover (Hahm et al., 2017).

Deep drilling and multiple years of intensive hillslope‐scale ecohydrologic field monitoring have resulted in the
interpretation that this lower than climatically expected vegetation community arises due the shallow (only 1–
2 m) propagation of weathering into the fresh melange bedrock (Hahm et al., 2019), which consequently results in
limited water storage capacity (about 1/10th of the typical wet season precipitation; in contrast, the Coastal Belt
immediately to the west has 20–30 m deep weathering fronts and three times greater seasonal water storage
(Dralle et al., 2018), with a dense evergreen forest (Figure 6a)). Storage of water from the wet season in the
subsurface is critical for plant water supply in the summer dry season in this rain‐dominated Mediterranean
climate (Hahm, Dralle, et al., 2022). Our mapping in this study extends the insights from hillslope‐ and

Figure 6. Google Earth imagery with topography of the four case studies highlighted in Figure 5, revealing some of the striking vegetation contrasts over short spatial
scales within similar climates that are hypothesized to arise due to geologic controls. The ecotones separating plant communities in these images generally coincide with
geologic contacts. In each image, the yellow line is a 10 km scale bar, and the latitude and longitude listed at the lower right of the image is from the center of the
scale bar.
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catchment‐scale field observations and indicates that the melange rock type is associated with lower than
climatically expected SR across the state (the melange is denoted as KJfm in Figure 7).

The low storage capacity of the melange results in both water limitation—in the dry season, when oak pre‐dawn
water potentials drop below − 3 MPa—and water excess, in the wet season, when the subsurface completely
saturates repeatedly in storms—resulting in anoxic conditions around flooded roots (Hahm et al., 2018, 2020).
The role of excess water as a control on vegetation has also been explored by Sousa et al. (2022), Roebroek
et al. (2020) and Zipper et al. (2015). The melange presents the interesting situation of rhizosphere water limi-
tation even when a perennially saturated zone is relatively near the surface: in the summer the vadose zone is just a
few meters deep, and although the fresh melange beneath is perennially saturated, its extremely low hydraulic
conductivity and anoxic conditions apparently prevent root water uptake (Hahm et al., 2020).

In contrast to the scenario where low permeability, perennially saturated fresh bedrock is near the surface, some
landscapes can instead have a high conductivity, high porosity substrate that allows infiltrating precipitation to
rapidly transit the root zone vertically, draining to deeper aquifers. This form of low vadose zone storage capacity
can also lead to water limitation and a lower than climatically expected plant community. These conditions have
been documented in karstic terrain in China (Liu et al., 2021; Jiang et al., 2020).

We posit that a similar phenomenon may also be possible in highly permeable volcanic bedrock. As a second case
study, we highlight a community with low biomass—and low SR—for the local climate in the Lassen foothills at
the north‐western end of the Sacramento Valley (second row in Figure 5). Here, a Pliocene aged volcanic sub-
strate (the Tuscan Formation (Lydon, 1967)) is inhabited by an open oak savanna with abundant rocky outcrops.
Both the geomorphology (characterized by buttes) and woody vegetation community, including Interior Live
(Quercus wislizeni) and Blue (Quercus douglasii) oaks, are strongly organized along outcrops of particular
subhorizontally bedded volcanic deposits (lahars containing tuffs and breccias), as seen in Figure 6b. Based on
these bedrock structure and vegetation observations, along with records of high surface infiltration rates and
conductivity within permeable beds (Butte County Department of Water and Resource Conservation, 2013), we
interpret that in this landscape infiltrating precipitation rapidly transits certain high permeability volcanic beds
that comprise the majority of the Formation volumetrically, without significant moisture retention. (Relatively
young volcanic landscapes in the Cascades can have relatively little water storage capacity in the near surface and
high conductivity (Jefferson et al., 2010; Tague & Grant, 2004)). Woody vegetation is minimal on these volcanic
beds, but is found along roughly elevation‐contour parallel bands where lower conductivity or higher storage

Figure 7. Violin plots of SR deviations for geologic units with large represented areas (>1,000 km
2) that appear to limit root

zone storage capacity (i.e., have median observed SR that are at least 20 mm less than the local climate‐predicted SR). Key
(adapted from Jennings et al. (2010)): Qrv: Volcanic rocks (Holocene) ‐ Recent (Holocene) volcanic flow rocks; minor
pyroclastic deposits. Qoa: Marine and nonmarine (continental) sedimentary rocks (Pleistocene) ‐ Older alluvium, lake, playa,
and terrace deposits. QPc: Nonmarine (continental) sedimentary rocks (Pleistocene‐Holocene) ‐ Pliocene and/or Pleistocene
sandstone, shale, and gravel deposits; mostly loosely consolidated. KJfm: Marine sedimentary and metasedimentary rocks
(Cretaceous‐Jurassic) ‐ Melange of fragmented and sheared Franciscan Complex rocks. Q: Marine and nonmarine
(continental) sedimentary rocks (Pleistocene‐Holocene) ‐ Alluvium, lake, playa, and terrace deposits; unconsolidated and
semi‐consolidated. Mostly nonmarine, but includes marine deposits near the coast. um: Plutonic rocks (Mesozoic) ‐
Ultramafic rocks, mostly serpentine. Minor peridotite, gabbro, and diabase; chiefly Mesozoic. Ku: Marine sedimentary and
metasedimentary rocks (Upper Cretaceous) ‐ Upper Cretaceous sandstone, shale, and conglomerate.
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capacity beds outcrop at the surface, as vegetation there may experience enhanced water availability from lateral
flow or greater retention of infiltrating precipitation.

4.1.2. Toxicity

Toxic concentrations of elements can be released via chemical weathering of underlying bedrock, inhibiting plant
growth. Classic examples are associated with ultramafic substrates, and in California there are well‐studied
examples of high‐biodiversity, low‐biomass endemic plant communities inhabiting serpentines (Harrison
et al., 2004; Kruckeberg, 1985, 1992). In these environments, plants struggle in the presence of exposure to high
ratios of Mg:Ca and high Ni (Kruckeberg, 1992).

Consistent with previous observations of low plant biomass on ultramafic substrates, we found that ultramafic
areas across the study area tend to have lower than climatically expected SR (denoted um in Figure 7). As a case
study, we highlight the dramatic example of a large ultramafic body in the Klamath‐Siskiyou region of north‐
western California—one of the largest in North America (third row in Figures 5 and 6c). This region can
climatically support dense evergreen forests, yet the vegetation situated on the serpentine substrate is commonly
stunted or altogether absent (Alexander et al., 2007), with scattered individuals of pine, fir and cedar. The
inhibited plant growth reduces evapotranspiration, in turn limiting water storage deficits and apparent root‐zone
water storage capacity, as illustrated conceptually in Figure 1. We emphasize that there may in fact be ample
water storage capacity, but the stunted plants growing on toxic substrates do not access it, and it is therefore
mapped as lower than climatically expected SR.

4.1.3. Nutrient Limitation

Low concentrations of plant‐essential nutrients in parent material, low erosion rate and/or high leaching may all
contribute to nutrient limitation, stunted vegetation, and lower than expected SR. In California, nutrient limitation
has been associated with ultramafic substrates (see Toxicity above), as well as leucogranitic plutons in the Sierra
Nevada, where phosphorus concentrations in parent bedrock can be an order of magnitude lower than more mafic
adjacent plutons (Hahm et al., 2014). The bottom row of Figure 5 illustrates one such pluton, the Quartz
Monzonite of Shuteye Peak, which has low woody plant cover (sparse Jeffrey Pine (Pinus jeffreyi)) and large
expanses of exposed granitic bedrock, in contrast to nearby granodioritic plutons experiencing a similar climate
which are occupied by high biomass evergreen forests, including the charismatic Giant Sequoia (Sequoiadendron
giganteum; Figure 6d). Ecotones separating the plant communities closely align with mapped intrusive contacts
(Hahm et al., 2014; Huber, 1968). Neither Shuteye Peak nor the nearby Bald Mountain were glaciated in the
Pleistocene, and their sparse soil cover has been attributed to nutrient limitation that inhibits root growth which
consequently inhibits soil retention (Hahm et al., 2014). This has been hypothesized to result in a feedback cycle
that further inhibits weathering and porosity production in the subsurface, which in turn also limits the water
storage capacity for trees and their growth (Callahan et al., 2022). Thus, geologic controls on water and nutrient
availability limit plant abundance, water use, and ultimately SR in ways that are potentially closely linked via
feedback cycles, defining an exciting research frontier.

4.2. Implications for Climate Change Driven Plant Biome Migration and the Use of SR in Models

Bioclimatic modeling approaches provide a first approximation to the availability of plant habitat (Pearson &
Dawson, 2003). It has long been argued, however, that physiographic, edaphic, and geophysical factors—in
addition to climate—should be taken into consideration when predicting and managing for climate change
induced species migration (Anderson & Ferree, 2010; Butler et al., 2007; Davis et al., 2018; Hulshof & Spa-
sojevic, 2020; Macias‐Fauria & Johnson, 2013; Theobald et al., 2015), a sentiment well captured by Krucke-
berg (2013): “given a regional climatic framework, much of the plant species diversity and discontinuity in the
region is governed by variations in soil chemistry, and thus by specific variations in the mineralogy of rock
substrates.” Our work builds on these insights by enabling a direct quantification of the impact of geology over
large spatial scales using recently made‐available, spatially distributed estimates of SR and a simple, climate‐
driven machine learning model.

SR is a key parameter across hydrology, vegetation, and climate models (Seneviratne et al., 2013), because of its
large impact on terrestrial water partitioning, plant‐water availability and associated carbon uptake, and the
associated impacts of latent heat flux and vegetation greenness on the climate. Although previous studies have
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used both climate and soils databases to establish edaphoclimatic envelopes for modeling vegetation distribution
(de Castro Oliveira et al., 2021), there is a growing consensus that traditionally used static soils database derived
estimates of SR are inadequate (Stocker et al., 2023). This is due to the mounting evidence of widespread plant‐
water uptake from bedrock whose water storage properties are not traditionally included within soils databases
(McCormick et al., 2021; Stocker et al., 2023) and because temporally changing vegetation communities can
result in shifting magnitudes of SR at a single location (Zhang et al., 2001; Li et al., 2019; Nijzink et al., 2016;
Hrachowitz et al., 2021). Our approach offers a path forward for empirically identifying geologic limitations on
SR, but we do not see a clear way to predict such limitations a priori at large spatial scales at the moment,
particularly when they arise due to hydrologic mechanisms (Figure 1). This is due to complicated feedbacks
among the various processes and our current inability to directly observe weathering extent and water storage and
flow properties at large spatial scales.

4.3. Limitations and Future Work

The distinction between top‐down (climate) versus bottom‐up (geologic) drivers of SR becomes murky over
longer time scales. This is partly because landscapes inherit paleoclimate weathering legacies: for example,
climate may result in glaciation, which can strip away soil and weathered bedrock, resulting in a proximate
bottom‐up control on SR that is facilitated ultimately by a long‐term climate history. Climate drivers are also
filtered by the subsurface to determine groundwater dynamics, which can strongly impact plant community
distribution over individual hillslope lengthscales (Fan et al., 2017; Koirala et al., 2017; Roebroek et al., 2020).
Climate also impacts hillslope diffusive and advective erosive processes, which may impact seedling estab-
lishment (Toloui‐Semnani & Johnson, 2019), the thickness of the weathered bedrock zone and the sizes of
colluvial wedges (and potential storage space for water (Ding et al., 2018; Milodowski et al., 2015; Rempe &
Dietrich, 2014)) and the spacing of ridges and valleys (Perron et al., 2009). It has also been argued that vegetation
“coevolves” with the subsurface in such a way to produce a particular water storage reservoir: in this view, soils
are largely biotic constructs (van Breemen, 1993). Our analysis also did not incorporate the effects of tectonic
uplift or erosion rate, which may cause the same geologic substrate to weather differently in different areas of the
state, and therefore have a distinct water storage capacity. The approach outlined in this study is not capable of
teasing apart the longer‐term connections between top‐down and bottom‐up drivers of SR—instead, it takes the
current climate at face value and asks whether the empirically observed SR is lower in some places relative to
others with the same climate. While this works in many locations (e.g., the case studies explored above), this
empirical approach is incapable of detecting a bottom‐up limitation on SR if all locations for a particular climate
are similarly limited by a geologically mediated factor.

An additional complication in identifying bottom‐up limitations of SR can arise in locations with significant inter‐
pixel lateral groundwater subsidies to vegetation (Fan et al., 2017; Roebroek et al., 2020). In this scenario, a larger
than climatically expected SRmay be detected because evapotranspiration is sustained by groundwater flow from
elsewhere, which could result in large calculated water storage deficits. We expect this process to be most
common at the scale of individual hillslopes, where water that infiltrates near local topographic highs may flow
laterally downslope toward local channels. Because the pixel sizes we consider are large relative to local hillslope
lengthscales, however, this effect should be minimized in our estimation procedure.

Finally, errors in either the precipitation or evapotranspiration timeseries data that are used to calculate observed
SR could spuriously result in lower (or higher) estimates of apparent water storage capacity. These errors are
presently difficult to detect with our method, but may be minimized in the future with higher accuracy distributed
hydrologic flux timeseries.

5. Conclusions
We employed a simple machine learning approach to quantify the difference between climatically expected and
observed apparent root‐zone water storage capacity (SR). By comparing the resulting patterns with geologic maps,
we found strong spatial correspondence between particular substrates and regions of lower than climatically
expected SR. These patterns are indicative of bottom‐up controls on the size of the root zone. Our mapping
approach is not capable of identifying the mechanisms by which geology limits SR. However, the patterns we
observed are consistent with mechanisms identified in previous field studies, which highlight the role of water
availability (excess and limitation), nutrient supply, and toxicity. Although our analysis is not exhaustive, the
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approach presented here enables extension of hillslope‐scale field inferences to much larger areas, and, impor-
tantly, does not rely on traditionally used soil water storage capacity databases, which are generally too shallow to
capture relevant plant water dynamics in seasonally dry climates. Furthermore, our findings indicate that climate
patterns alone can be insufficient predictors of root zone water storage capacity. The subsurface matters, and
should be incorporated into earth system models and ecosystem migration management plans in the context of
climate change.

Data Availability Statement
All data used in this paper are publicly available and were previously published. Precipitation came from PRISM
(Daly et al., 2015), evapotranspiration from PML v2 (Zhang et al., 2019), snow cover from the MODIS Terra
normalized difference snow index product (Hall et al., 2010), potential evapotranspiration from the MODIS Terra
MOD16A2 product (Running et al., 2017), the asynchronicity index from Hahm, Lapides, et al. (2022), and
geologic layers from Jennings et al. (2010) and Huber (1968). Python computational notebooks that reproduce the
results and derived datasets are available in a repository hosted on Hydroshare: https://www.hydroshare.org/
resource/be4e3be9e18144908bd4a7baa75a9a4e/ (Hahm, 2023).
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